
Suggested line of text (optional):

WE START WITH YES.

October 16, 2020

Characterizing and
understanding the
behavior of HDF5 I/O
workloads with Darshan

erhtjhtyhy

Shane Snyder
Argonne National Laboratory

HDF Users Group (HUG) ’20

Motivation

❖ HDF5 offers a convenient abstraction for
large data collections, but it can be
difficult to understand how it interacts
with lower layers of the I/O stack that
most impact performance
➢ Users may not adequately understand the

linkage between their I/O workloads and
attained performance

❖ Instrumentation of HDF5 I/O workloads
can be critical to understanding and
improving their use of storage resources
➢ This data can inform tuning decisions of

individual users, or to better understand
broader HDF5 usage in the wild

2

S
to

ra
ge

 a
bs

tra
ct

io
ns

Technologies

Suggested closing statement (optional):

WE START WITH YES.
AND END WITH THANK YOU.

DO YOU HAVE ANY BIG QUESTIONS?

Darshan: An application-centric I/O
characterization tool

❖ Darshan is a lightweight I/O characterization tool that captures concise views
of application I/O behavior
➢ For each instrumented job, produce a summary of I/O activity for each file accessed

■ Counters, histograms, timers, & statistics
■ Full I/O traces (if requested)

❖ Widely available
➢ Deployed (and typically enabled by default!) at many production computing facilities

❖ Easy to use
➢ No code changes required to integrate Darshan instrumentation
➢ Negligible performance impact; just “leave it on”

❖ Modular
➢ Adding instrumentation for new I/O interfaces or storage components is straightforward

Darshan background

4

How does Darshan work?

❖ Darshan inserts application I/O instrumentation at link-time (for static
executables) or at runtime (for dynamic executables)
➢ Darshan has traditionally depended on MPI, but recent versions (3.2.0+) can also instrument

serial applications (only for dynamically-linked executables)

5

❖ As app executes, Darshan records
file access statistics for each process
➢ Per-process memory usage is bounded to

limit runtime overheads
❖ At app shutdown, collect, compress,

and write log data
➢ For MPI applications, use collective

operations to reduce shared file records
and write log data

Analyzing Darshan logs

❖ With a log generated, Darshan offers command line analysis tools for
inspecting log data
➢ darshan-parser - provides complete text-format dump of all counters in a log file
➢ darshan-job-summary - provides a summary PDF characterizing application I/O behavior

6

I/O operation costs across
different I/O interfaces

I/O operation counts across
different I/O interfaces

I/O access size ranges used by
application

Suggested closing statement (optional):

WE START WITH YES.
AND END WITH THANK YOU.

DO YOU HAVE ANY BIG QUESTIONS?

Integrating HDF5 support into Darshan

Darshan HDF5 instrumentation

❖ To provide a deeper understanding of HDF5 I/O workloads, we have
developed a detailed instrumentation module for Darshan¹ that
characterizes I/O behavior from HDF5 file- (H5F) and dataset-level (H5D)
perspectives
➢ Characterize dataset properties, access patterns, organization within files, etc.

❖ This data not only characterizes an application’s usage of the HDF5 library,
but can help contextualize HDF5 I/O behavior with that of lower layers of the
I/O stack (e.g., MPI-IO or POSIX layers) that Darshan also instruments
➢ Do high-level HDF5 dataset accesses decompose efficiently into underlying MPI-IO and

POSIX file system accesses?
➢ If not, what optimizations (e.g., collective I/O, chunking) make most sense?

8

1. Available starting in Darshan version 3.2.0

Darshan HDF5 instrumentation

❖ H5F instrumentation highlights:
➢ Operation counts

■ open/create
■ flush

➢ MPI-IO usage
➢ Metadata timing

9

Darshan HDF5 instrumentation

❖ H5D instrumentation highlights:
➢ Operation counts:

■ open/create
■ read/write
■ flush

➢ Total bytes read/written
➢ Access size histograms
➢ Dataspace selection types

■ Regular hyperslab
■ Irregular hyperslab
■ Points

➢ Dataspace total dimensions, points
➢ Chunking parameters
➢ MPI-IO collective usage
➢ Deprecated function usage
➢ Read, write, and metadata timing

10

A Darshan+HDF5 example

❖ Using the MACSio¹ HDF5 plugin, run a couple of simple examples
demonstrating the types of insights HDF5 I/O instrumentation can enable
➢ 60-process (5-node) single shared file, 3d mesh, write roughly 1 GiB of cumulative H5D data
➢ Compare performance of collective and independent I/O configurations

11 1. https://github.com/LLNL/MACSio

b/w: ~30 MB/sec

POSIX I/O dominates,
H5 incurs non-negligible
overhead forming this
workload

Negligible time spent in
MPI-IO

b/w: ~290 MB/sec

H5 and POSIX incur
minimal overhead for
this workload

MPI-IO collective I/O
algorithm dominates

Average per-process time spent in I/O

A Darshan+HDF5 example

12

b/w: ~30 MB/sec

POSIX I/O dominates,
H5 incurs
non-negligible
overhead forming this
workload

Negligible time spent
in MPI-IO

Nearly 5 million POSIX
writes, all less than
1KB in size --
challenging workload
for a parallel file system

Number of MPI-IO
writes same as POSIX
writes -- no
transformations at
MPI-IO layer

Average per-process time
spent in I/O

A Darshan+HDF5 example

13

b/w: ~290 MB/sec

H5 and POSIX incur
minimal overhead for
this workload

MPI-IO collective I/O
algorithm dominates

Considerable reduction
in number of POSIX
writes, with some
accesses in the O(10
MB) range

Notice there are still
some MPI-IO
independent writes for
HDF5 metadata

Average per-process time
spent in I/O

A Darshan+HDF5 example

14

This graph provides a slight variation on previous
graphs showing relative costs of different types of
I/O operations (write and metadata) within different
APIs

More than 99% of HDF5 metadata time spent in
H5F-level functions instrumented by Darshan
➢ H5F metadata cost can be completely

attributed to file creation/close for this
workload

➢ This H5F metadata cost does not translate to
metadata costs at other layers, yet it seems
unlikely this ~10 seconds is just due to the
writing of HDF5 metadata at file open/close?

Average per-process I/O cost at
different API levels

Independent I/O

Wrapping up

❖ Integrating HDF5 support into the Darshan I/O characterization tool enables
a better understanding of HDF5 application I/O workloads and their
interaction with underlying storage layers
➢ This instrumented HDF5 data can be used in Darshan analysis tools to assist users in

detecting inefficiencies in application I/O behavior and to inform their tuning decisions

❖ While we have already released a Darshan version with HDF5 support, it’s
not too late to make an impact -- we’d love to hear more from the HDF
community!
➢ What else should we instrument? What are effective ways of visualizing this data?

❖ Darshan website: https://www.mcs.anl.gov/research/projects/darshan/
❖ Darshan-users mailing list: darshan-users@lists.mcs.anl.gov
❖ Source code, issue tracking: https://xgitlab.cels.anl.gov/darshan/darshan

15

https://www.mcs.anl.gov/research/projects/darshan/
mailto:darshan-users@lists.mcs.anl.gov
https://xgitlab.cels.anl.gov/darshan/darshan

Thanks!

